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Abstract—DNN validation and verification approaches that are
input distribution agnostic waste effort on irrelevant inputs and
report false property violations. Drawing on the large body of
work on model-based validation and verification of traditional
systems, we introduce the first approach that leverages environ-
mental models to focus DNN falsification and verification on the
relevant input space. Our approach, DFV, automatically builds
an input distribution model using unsupervised learning, prefixes
that model to the DNN to force all inputs to come from the
learned distribution, and reformulates the property to the input
space of the distribution model. This transformed verification
problem allows existing DNN falsification and verification tools to
target the input distribution — avoiding consideration of infeasible
inputs. Our study of DFV with 7 falsification and verification
tools, two DNNs defined over different data sets, and 93 distinct
distribution models, provides clear evidence that the counter-
examples found by the tools are much more representative of
the data distribution, and it shows how the performance of DFV
varies across domains, models, and tools.

Index Terms—neural networks, input distribution model, ver-
ification, falsification

I. INTRODUCTION

A deep neural network (DNN) is trained to accurately
approximate a partial target function, f R® — R™,
The domain of definition of f — referred to as the data
distribution D — is typically an infinitesimal portion the full
domain, \%\ ~ 0. However, much of the recent literature
on validation and verification of DNNs ignores the partiality
of a DNN’s definition with significant negative consequences.
First, existing test generation techniques [1], [2], [3], [4], [5]
have been shown to produce a majority of inputs that lie
off of the data distribution [6], [7]. Second, white-box DNN
coverage criteria [8], [2] do not take the distribution into
account and this can drive coverage-directed test generators off
the distribution [6] and give misleading reports of the coverage
achieved [7]. Third, faults that are detected for off distribution
inputs constitute false reports [6], [7] which can lead to wasted
effort in fault triage, localization, and fixing.

Whereas recent research has begun to explore how to
leverage models of the data distribution for testing [9], [7],
in this paper we present the first approach to use such models
to support techniques for DNN verification and falsification — a
form of property-driven validation [10]. Our distribution-based
falsification and verification (DFV) approach for DNNs draws
inspiration from the large body of research exploiting environ-

mental models of the feasible input domain for software sys-
tems to focus Verification and Validation (V&V). These mod-
els are typically built from the system requirements and can be
expressed in a variety of forms, e.g., simulations [11], state-
machines [12], or logical specifications [13]. Such environment
models [14] have become an essential component of validation
and verification approaches for software systems [15], [16],
[17], [18], [19] and this has led them to be adopted in several
domains [20].

To be amenable for V&YV, environment models must satisfy
three requirements. First, they must be accurate in defining the
set of feasible inputs. For example, for an underapproximating
analysis, e.g., [18], an underapproximating model is required
to guarantee feasible counter-examples; dually an overapprox-
imating analysis requires an overapproximating environment
model. Second, they must be generative, providing the ability
to be executed, interpreted, or solved, so they can be leveraged
to generate feasible inputs. For example, generating feasible
counter-examples when verifiers or falsifiers detect property
violations [21]. Third, for verification they must be amenable
to constraint-based encoding in a form that can be leveraged
by the verification algorithm. For example, for a SMT-based
verification method, e.g., [18], an environment model must
be convertible to logical formulae in a supported theory. For
abstract interpretation, e.g., [22], an environment model must
be convertible to supported abstract domains.

In this paper, we adapt the concept of an environment model
to support the existing verification and falsification techniques
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [10] of specified properties of
DNNs. To do this, we have to address a challenge that it
is intractable: the specification of an accurate model of the
feasible inputs for a complex DNN - like those that process
images captured by a forward facing camera (see Figure
3b [39]). A key insight of this work is that we can leverage
the rich body of research that the machine learning (ML)
community has developed for learning generative models of
the data distribution, which we use as environment models.

DFV transforms a DNN and a correctness property into
a falsification or verification problem focused on the data
distribution in three steps. First, a generative model of the
data distribution for a DNN is trained [40], [41]. Unlike man-
ually developed environment models for traditional software



V&V, these environment models are constructed automatically
through an unsupervised training process. The design and
training of the model of the data distribution can leverage
ML best-practices to produce a suitably accurate model [42],
[43]. Second, the approach modifies the original DNN to use
the appropriate component of the trained generative model,
e.g., the decoder of a variational autoencoder (VAE), as a set
of prefix layers to the DNN under analysis. This forces all
inputs to the DNN to come from the learned data distribution.
Third, the approach reformulates the correctness property over
the input space of the generative model. For verification,
the feasible input space can be overapproximated, whereas
for falsification techniques, the feasible input space can be
underapproximated. DFV supports the reporting of feasible
on-distribution counter-examples, when property violations are
detected, and reporting that specified subsets of the data
distribution are free of violations, when verifiers are able to
discharge such proofs.

We evaluate DFV on DNNs trained to recognize images
of clothing [44] and trained to control a drone from image
data [39], for a range of challenging correctness properties.
We find clear evidence that DFV enables existing falsification
and verification techniques to produce counter-examples that
are much more representative of the data distribution than are
computed otherwise — both visually and in terms of standard
measures of similarity. While scaling of verification tech-
niques is challenging, we also find evidence that distribution
models can enable them to prove properties over the data
distribution. Building on these promising findings, we study
how varying the architecture of the model and how shifting
between different families of generative models impacts the
effectiveness of the technique. Our results can be used to guide
the development of models to support DFV.

The primary contributions of this work are the: (1) formu-
lation of the first model-based verification and falsification
method for DNNs; (2) demonstration that distribution models
yield substantially better counter-examples from verification
and falsification; and (3) exploration of different models of
the data distribution and their trade-offs.

II. BACKGROUND

In this section we provide background on deep neural
networks, DNN verification and falsification, and DNN testing
approaches that exploit the data distribution.

A. Deep Neural Networks

A deep neural network, A/, is a type of machine learning
model that is trained to approximate a partial target function
f + R® — R™. For example, f may classify some n-
dimensional input (e.g., an image) as one of m possible classes
(e.g., a digit in the range O to 9). f is partial in the sense that
it is trained to generalize to a target data distribution, D C R”.
For inputs off of the distribution, x « D, its behavior, N'(x),
should be considered as undefined.

DNNs are comprised of layers, lg,...,l;, each of which
performs some computation on their input (e.g., matrix multi-
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(a) VAE with encoder V
trained to learn the pa-
rameters of the latent dis-
tribution and decoder D
trained to learn the like-
lihood of an input given
values in the latent space.

N(0,1)¢

(b) GAN with trainable input genera-
tor G and discriminator D that predicts
the probability that an input is from the
true data distribution.

Fig. 1: Generative latent distribution models that produce
unseen samples from the data distribution.

plication or convolution). A typical linear architecture defines
a DNN as the composition of layers, N' =l 0---0lj olj.
Layers are comprised of neurons. The input of a neuron is
defined as the weighted sum of the outputs of a set of neurons
in a preceding layer where the connections between neurons
have trainable parameters. The output of a neuron applies a
non-linear activation function to the input.

Training involves initializing the parameters and then ap-
plying N to samples, (z,y), from the training set, T, and re-
peatedly updating parameters based on ||N () —y]|.
goal of training is to learn the partial function f defined over
D, D is generally unmanageably large (e.g., the set of road
images visible on a forward facing camera). Consequently,
the training set is defined as a representative sample of the
data distribution, 7" ~ D. A well-trained network is said to
generalize to the data distribution [45].

B. Models of the Data Distribution

The field of machine learning has long understood the im-
portance of modeling the data distribution. Broadly speaking,
the field has developed two types of approaches. Out-of-
distribution detectors [46] are designed to determine whether
a data point lies on the data distribution, but are generally
unable to generate new data from the distribution. In contrast,
generative models are designed to generate unseen samples
from the data distribution. There are three broad classes of
generative models: variational autoencoders (VAE) [40], gen-
erative adversarial networks (GAN) [41], and autoregressive
models such as PixelCNN++ [47]. Among these, VAEs and
GANSs can be classified as latent variable models since they
make explicit the mathematical structure of the learned latent
space which models D. We leverage generative latent variable
models of the data distribution in this work.

Fig. la depicts a VAE as comprised of a pair of trainable
models: an encoder, V, and a decoder, D [40]. The encoder,
or inference network, is trained to learn the parameters of
the latent distribution, ¢(z | &), that, through a regularization
term, seeks to match a given prior distribution - usually a
multivariate Gaussian, A/(0,1)%. The decoder, or generative
network, is trained to learn the likelihood of an input given



values in the latent space, p(x | z). These networks are trained
together on inputs drawn from the data distribution, D, by
minimizing the difference between posterior and latent prior
and maximizing the likelihood estimation of the input. A VAE
is generative in the sense that one can sample from the latent
space, z ~ N(0,1)%, and then run the decoder, D(z) = z,
to produce a sample that lies on the data distribution. VAEs
can be leveraged for out-of-distribution detection by exploiting
the fact that for & ~ D, V() produces a distribution that can
be sampled to generate inputs, &. Computing || — &|| for a
number of samples yields the encoder-stochastic reconstruc-
tion error (ESRE) [48]. We adapt ESRE to use the structural
similarity index measure (SSIM) [49] to assess the quality of
generated image data in §IV.

Fig. 1b depicts a GAN as comprised of a pair of trainable
generator, G : RY — R", and discriminator, D : R" —
R, [41]. The generator produces an input, &, from a set
of latent variables. The discriminator predicts the probability
that an input is from the true data distribution, p(x ~ D).
The GAN is trained by presenting generated, &, and training
inputs, x, to the discriminator without disclosing their source,
x7. The generator loss function is high when the generated
data is classified as generated data by the discriminator, i.e.,
p(& ~ D) is low. The loss function of the discriminator is
high when it incorrectly classifies data, i.e., p(& ~ D) is high
or p(x ~ D) is low, and a low value when it is correct.
The weights of the generator and discriminator are updated to
decrease their respective loss values. Through this process, the
generator learns to produce data close to the data distribution.

There is a rich literature on the design of VAEs and GANs
exploring the impact of latent dimension, complexity of model
architectures, and variation in loss functions on the accuracy
of the learned model. Generally GANs are thought to possess
better precision, i.e., produce sharper images, but suffer from
poor recall, whereas VAEs are thought to be the opposite, i.e.,
good recall, but produce blurry images. Leveraging distribution
models for V&V requires a measure of both, but the ML
literature continues to improve in this regard. For example,
VAESs can now achieve precision that outperforms well-tuned
GANs while retaining good recall [50].

C. DNN Verification and Falsification

A correctness problem is a pair, ¥ = (N, ), of a DNN,
N : R"™ — R™, and a property specification ¢, formed to
determine whether N |= ¢ is valid or invalid. The property
specification defines a set of constraints over the inputs, ¢x
— the pre-condition, and a set of constraints over the outputs,
¢y — the post-condition. Verification of ¢(N) seeks to prove
or falsify: V& € R™ : ¢px(x) — ¢y(N(x)). Falsification seeks
only to falsify that formula.

Two common types of DNN properties are robustness and
reachability. Robustness originated with the study of adver-
sarial examples [51], [52], and specifies that inputs from a
given input region are all classified the same. This type of
property is common for evaluating verifiers [53], [26], [36],
[31]. Reachability properties define the post-condition using

constraints over output values, specifying that inputs from a
given input region reach outputs within a given safe output
region. This type of property has been used to evaluate several
DNN verifiers [53], [35], [54].

A recent survey on DNN verification [55] classifies ap-
proaches for verifying DNN correctness problems based on
their type: reachability, optimization, or search, or a combina-
tion of these. Tools implementing a range of these approaches
and their combination have been developed over the past three
years [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37]. Despite the significant research
into this topic scalability remains a challenge, but usability
has been improved by the availability of frameworks like
DNNYV [38] which we use in our work.

Complementary to verification, falsification checks proper-
ties of DNNs by attempting to find examples that violate the
specification for a given model. Two categories of techniques
that have been developed for falsifying DNN correctness prob-
lems are adversarial attacks and fuzzing. Adversarial attacks
are methods optimized for detecting violations of robustness
properties [52]. Fuzzing methods randomly generate inputs
within a given input region, and checking whether the outputs
they produce violate the post-condition. Fuzzing techniques
include TensorFuzz [3] and DeepHunter [4]. More recently,
the range of applicability of adversarial attacks and fuzzing
has been increased to correctness properties by DNNF, which
reduces general DNN correctness properties to robustness
properties [10], [56].

D. Distribution-aware DNN Testing

Recent work in testing has begun to explore models of the
input domain to support DNN testing. Riccio and Tonella
construct explicit models of the input space using domain
knowledge to generate test cases in order to characterize the
space of DNN misbehaviors [57]. Dola et al. show that not
considering the input distribution can bias the assessment of
DNN testing techniques, and then use VAEs to model the
input distribution and to augment the objective functions of
test generation techniques to remedy that bias [7]. Byun and
Rayadurgam also describe how to model the input distribution
with a VAE and use it to generate test inputs [58]. Our
approach differs in that it composes the distribution model,
e.g., a VAE decoder, with the DNN under analysis and,
because we focus on verification and falsification, develops
constraint-based encodings that over and under-approximate
designated portions of the input space of that model.

III. APPROACH
We present DFV, our approach for focusing DNN verifica-
tion and falsification techniques on the data distribution.
A. DFV Overview

Fig. 2a depicts the generic structure of DFV. Our insight
is that properties should be verified not over the entire input
domain, R™, of a DNN, but rather over the data distribution,
D, used to train the DNN, i.e., its domain of definition. Since
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(a) General DFV Framework. Z is
the latent space distribution, M is
the generative model, A is the net-
work, with pre-condition ¢x and
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(b) Instance of DFV Framework witha VAFE
decoder D as M, precondition ¢x(z) =
true, and ¢ bounds on the M (required by

(¢) For d dimensions, a /2 d-ball of radius
c contains all points within ¢ standard
deviations of the mean. Since verifiers
do not support non-linear constraints to
represent [%, we approximate it with [°°.

Fig. 2: Distribution-based Falsification and Verification Framework with Bounding Constraints

D is a small subset of the domain there is the potential to
enable property verification when violating inputs lie off of
the distribution. Moreover, by restricting verification to inputs
on the distribution, © ~ D, counter-examples will be feasible
and worth fixing.

To define D, we advocate the use of a latent variable
generative model, M : RY — R"™ where d < n. With
M analyses can be formulated over the low-dimensional
latent space, Z ~ N(0,1)%, to reason about the behavior of
systems on D. Two classes of such models that we explore,
introduced earlier in §II, are variational autoencoders (VAE)
and generative adversarial networks (GAN).

Our goal is to define the set of inputs that lay on the
data distribution and that satisfy the property pre-condition,
ie, € ~ D A ¢x(x). Fig. 2a depicts the enforcement of
these constraints using two mechanisms: the use of M as
a prefix network, and the forwarding of generated inputs to
enable the enforcement of the pre-condition prior to checking
post-conditions — as described in [10]. We note that it is also
possible to combine M and ¢ x by defining a generative model
capable only of producing inputs satisfying the precondition,
in which case the forwarding generated inputs is not needed.
With these elements the verification problem can be reformu-
lated as Vz € Z : g (M(2z)) = ¢p(N(M(2))).

In this paper, we explore in detail an instantiation of DFV,
depicted in Fig. 2b, that uses a VAE as the generative model
and targets output properties of the DNN, i.e., where the
precondition is true. As explained in §II, the VAE’s encoder
and decoder are trained together, but we only exploit the
decoder, M = D, for DFV.

Since the dimension of the latent space of the VAE is gener-
ally much smaller than the input dimension, the generated set
of inputs, {M(z) : z € Z}, takes up an infinitesimal portion
of the ambient input space. For falsification, this allows the
problem to be reformulated from the input space, 3 ~ D :
—¢y (N (x)), to the latent space, Iz € Z : ~dy (N (M (2))).
More importantly, since existing falsification algorithms can-
not test that & ~ D, this approach is the first to yield counter-
examples that lie on the data distribution — subject to the
precision of M in modeling D. Similarly verification can be
reformulated to the latent space, Vz € Z : ¢y (N (M(2))).

Existing verification and falsification tools require that their
input space be bounded. When using M that input space is
the latent space of the distribution model and its Gaussian
structure allows us to formulate a meaningful bound. For
a d-dimensional latent space, the 12 d-ball of radius ¢, as
depicted in Fig. 2c, contains all points within ¢ standard
deviations of the mean. The value of c can be specified to
contain an arbitrarily large portion of the distribution, e.g.,
c = 5 specifies verification of 99.99994% of the distribution.
However, existing DNN falsifiers and verifiers do not support
the non-linear constraints necessary for defining the [ d-ball,
so we formulate hypercube approximations.

As depicted in Fig. 2c, the [*° d-ball is the smallest
hypercube that overapproximates the 2 d-ball. We denote
with Z. the hypercube with radius ¢ — side-length 2c. For-
mulating constraints that restrict each of the d dimensions to
the interval [—c, ] yields a verification problem, Vz € Z,. :
dy(N(M(z))), that will soundly verify ¢ standard deviations
in Z. Dually, for falsification, we can use the largest hypercube
that underapproximates the 12 d-ball. We denote with Z = the
hybercube with radius id. Restricting each latent dimension
to lie in the interval [—ﬁ, ﬁ] guarantees that any counter-
example detected will lie within ¢ standard deviations in Z.
This follows from defining the inscribed hypercube with side-
length s, equating the diameter of the 2 d-ball, 2¢, with the
longest diagonal of that hypercube, sv/d, and solving for s.

B. DFV Algorithm

Algorithm 1 defines DFV through a series of transforma-
tions followed by the invocation of the verifier or falsifier.

The DFV algorithm accepts a correctness problem, com-
prised of a DNN, N, and correctness property, ¢. In addition,
it takes a model, M of the data distribution, D, a verifier or
falsifier, V', and a radius, ¢, which defines how much of the
data distribution should be subjected to analysis. Its output
indicates that either a property wviolation has been detected,
the property is valid within radius c (for verifiers), or the result
is unknown — due to limitations in the verifier or falsifier used.
When a violation is reported a counter-example, ce, is returned
as well. We now describe the algorithm in more detail.



Algorithm 1: DFV

Input: Correctness problem ¢ = (N, ¢), Distribution
model M, Verifier/Falsifier V', Radius ¢
Output: {violation:ce, valid, unknown}
1 begin
2 | NN+ NoM
3 ¢ +—VzeRMI: (2 ¢
[—¢, M) N px(M(2)) —

Py (N'(2))
P (N, ¢')
result < check(V,{")
if result = violation then
return violation :
L M(getCounter Example(result))

9 return result

e N N A

Decoupling the Training of the Distribution Model from
DFV. Algorithm 1 consumes M, separating the training of M
from DFV. This is important because there are many degrees
of freedom when training M, often dependent on the type
of model and training used. For example, for a VAE, such
as those used in §IV, the effectiveness of the learned model
depends on many factors, including the architecture of the
model (e.g., number, type, and configuration of layers) and the
training parameters (e.g., optimizer, batch size, and learning
rate). Independent of the model and training process, the goal
of this pre-stage to DFV is for M to approximate D. We
note that the development of distribution models that have high
precision and recall is an active area of ML research [42], [43],
and that recent research has defined high-precision VAEs [50].
We note, however, that models with lower levels of precision
can still be quite valuable. As we show in §IV, rather sim-
ple VAE models can yield much more meaningful counter-
examples than those produced without using a distribution
model. In this work we explore VAE variations, but we leave
to future work a broader study of how model accuracy impacts
the cost and benefit of DFV.

Problem Transformation. DFV transforms the correctness
problem as described in lines 2-5 of Algorithm 1. Line 2
modifies the original DNN by prefixing it with a generative
model, as shown in Fig. 2a. This transformation prefixes
the original DNN with a latent variable generative model,
such as the decoder of a VAE. Because the generative model
maps inputs from a known distribution to the learned data
distribution, this step ensures that verification and falsification
will only check inputs from the data distribution learned by
the prefixed model. That is, the tools can focus on the inputs
that are within the distribution. Line 3 replaces the input pre-
condition of the original property with a new pre-condition
specifying that inputs come from the latent space of the
generative model — M.d denotes its dimension — and that
these inputs satisfy the pre-condition. Because the verifiers
and falsifiers require inputs to be bounded, we assert bounds
on the latent space. When the latent space distribution of the

ionMNIST training images.

. (a) Fash

(b) DroNet training images.

Fig. 3: Samples from FashionMNIST and DroNet training sets.

generative model is Gaussian, we require z to be within c
standard deviations of the mean. We approximate this with a
hypercube of radius c centered at the origin. Line 5 joins the
outcomes of the transformation from line 2 and 3 to redefine
the correctness problem on the data distribution.

Verification and Falsification. After transforming the prob-
lem, on lines 6-9, falsifiers and verifiers can be run on the mod-
ified correctness problem, ¢/’ = (N, ¢'). If a counter-example
to 1’ is found, then it can be mapped to a valid counter-
example of the original property by performing inference with
the generative model, M. DFV will report, violation, along
with the counter-example, otherwise it will report the valid or
unknown result returned by V.

IV. STUDY

In this section we assess the cost-effectiveness and scala-
bility of DFV by applying it in conjunction with multiple fal-
sifiers and verifiers. Our evaluation will answer the following
research questions:

1) What is the cost-effectiveness of applying falsification

and verification with DFV?

2) How does the configuration of the model used by DFV

affect the quality and quantity of counter-examples?

3) How well does DFV scale to more complex input do-

mains that required more sophisticated models?

A. Design

We now describe the problem benchmarks, generative mod-
els, falsifiers, verifiers, and metrics that constitute the three
experiments in our study. We describe the experimental pro-
cedures using these items under each research question.

1) Problem Benchmarks: Our criteria for the selection
of problem benchmarks required for them to have models
developed by others that offer a range of challenges in terms of
architectural complexity, domains and tasks, and architectures
and training data. They also had to have global reachability
properties that are supported by DFV, and be amenable to the
application of existing tool sets. In the end, we identified two
benchmarks of correctness problems that fitted our criteria.

The GHPR-FMNIST benchmark is a new DNN correctness
problem benchmark, based on the GHPR-MNIST benchmark
from the evaluation of DNNF [10]. The benchmark con-
sists of 20 global reachability properties applied to a small



TABLE I: Generative Models

RQ Name Latent Layers/ Output
Dim. Neurons Activation
1,2 VAE vmRs 100 2/768 Sigmoid
1 VAE ro1 2 1/24 ~Sigmoid
2 VAE 4,1 1-32 1-4/16-1024  Sigmoid
3 FC-VAE pronet 512 5/4608 Sigmoid
3 Conv-VAE pronet 512 7/202729 Sigmoid
3 GANDroNet 512 2/3840000 Sigmoid

FashionMNIST [44] network. A sample of images from the
FashionMNIST training set is shown in Fig. 3a. The network
used is based on the architecture of the small MNIST network
from the evaluation of the Neurify verifier [53]. There are
2 formulations of properties in this benchmark. The first 10
properties, which we will refer to as type A, are of the form:
for all inputs, if class a has the maximal value, then the output
values for classes a and b are closer to one another than the
output values for classes a and c. For example, one of the
properties states that for all inputs, if that input is classified
as a sneaker, then the class sandal will be ranked higher
than class shirt. The other 10 properties (type B) are weaker
variations that drop the maximal value constraint.

The GHPR-DroNet benchmark, introduced in DNNF [10],
consists of 10 global reachability properties applied to the
DroNet DNN [39], which predicts a steering angle and prob-
ability of collision for a quadrotor from 200 by 200 black
and white images. DroNet is a large DNN model consisting
of 3 residual blocks and over 475,000 neurons. A sample of
images from the DroNet training set is shown in Fig. 3b. The
properties are of the form: for all inputs, if the probability of
collision is between p;,;, and p,,q., then the steering angle is
within d degrees of 0. As p,,;, increases, so does d, capturing
the intuition that if the probability of collision is low, then the
quadrotor vehicle should not make sharp turns.

2) Generative Models: We consider two powerful types of
latent variable generative models to learn the data distribution
of the training set — VAEs and GANS. We selected these mod-
els because: 1) they meet the requirements of the approach,
2) they are among the most popular unsupervised learning
approaches to encode a data distribution, and 3) they work
in different ways and provide different tradeoffs. Given the
number of variables involved in our experiments, we chose
VAEs for RQ1 and RQ2, and incorporated GANs for RQ3.
Through the study we explored a total of 93 models, 91
to characterize the distribution of GHPR-FMNIST and 2 to
characterize the distribution of GHPR-DroNet. All models
used in the study are shown in Table I. Details for the
configuration of those models is provided in the experimental
procedures for each of the research questions.

3) Falsifiers and Verifiers: For the falsifiers, we will use
four common adversarial techniques included in the DNNF
tool [10]. DNNF reduces correctness problems to adversarial
robustness problems to allow them to be falsified by off-the-
shelf adversarial attacks. We chose to use FGSM [59], Basic
Iterative Method (BIM) [60], DeepFool [61], and Projected
Gradient Descent (PGD) [62] as they were the top performing

falsifiers in the DNNF study. We use the same parameters for
each adversarial attack method as used in that study.

We will also use three top performing DNN verifiers. We
chose to use Neurify [53], VeriNet [63], and nnenum [64],
which are all supported by DNNV [38], and have performed
well in recent benchmarks [65], [66]. In addition, each of these
verifiers have the ability to return counter-examples.

4) Metrics: For each run of the falsifiers and verifiers we
report the number of counter-examples found and the time
to find each counter-example. To judge the quality of each
counter-example we compute the mean reconstruction simi-
larity (MRS) which, as discussed in §II, adapts ESRE to use
the SSIM metric. Given a reference VAE, V), MRS computes
for a given input, x, the expected similarity for a set of recon-
structed inputs, M RS(z,V) = & Zf\; SSIM(V(x),z). In
this work, we estimate the mean using a sample size, IV, of
100 reconstructions.

For each problem domain we also require a VAE model to
use as a ground truth for measuring the MRS. For Fashion-
MNIST we trained a fully-connected VAE model, VAE ygs,
with a 100-dimensional latent space, and symmetric encoder
and decoder, each with two hidden layers, one of 256 neurons
and one of 512 neurons, and ReLLU activations. The decoder
uses a Sigmoid activation so that output values are in the range
0 to 1. We chose to use a model significantly larger than those
used for DFV for evaluating MRS under the assumption that
a larger model would be able to better model the distribution
and thus provide accurate MRS measures for all models
tested. For DroNet we trained a convolutional VAE model,
Conv- VAE pronet, With symmetric encoder and decoder, and
a 512 dimensional latent space. The decoder consists of 8
blocks, each composed of a convolutional transpose operation
followed by batch normalization and an ELU activation, except
for the final block, which uses a Sigmoid activation so that
output values are in the range O to 1. We chose to use
this model as the baseline for MRS, since we expected a
convolutional model to perform well on the image data of
the DroNet benchmark.

5) Computing Resources: The experiments in this work
were run on nodes with Intel Xeon Silver 4214 processors at
2.20 GHz and 512GB of memory. For RQ1 and RQ2 each job
was allowed to use 1 processor core and unrestricted memory,
and had a time limit of 1 hour, while falsification jobs in RQ2
— exploring the factors of the VAE — had a time limit of 5
minutes. For RQ3, each job was allowed to use 2 processor
cores and had a time limit of 1 hour.

V. RESULTS
A. RQ-1: on DFV efficacy

In this first experiment, we quantitatively and qualitatively
assess the effectiveness of DFV and its costs when applied in
conjunction with 4 falsifiers and 3 verifiers.

Experimental Procedure. To answer RQI, we use the
GHPR-FMNIST benchmark. We run both the verifiers and
falsifiers on this benchmark, with and without our DFV
with VAERg:. We designed VAERg: so that all existing



tools could successfully run on it. This meant that we had
to constrain its size and type of activation functions so
that existing verifiers could process it. More specifically, we
design VAERg: with a single hidden layer of 24 neurons
in the decoder, and instead of a Sigmoid activation on the
output, it uses an approximation of the Sigmoid function
with ReLU activations, since, of the verifiers explored in
this work, only VeriNet supported non-ReLU activation func-
tions. The approximation used is as follows Sigmoid(z) =
ReLU(—ReLU(—0.25%2+0.5)+1). We run each tool 5 times
on every problem to account for random noise and we record
the number of problems that return a sat result, indicating
that a counter-example was found, as well as the MRS of each
counter-example. Each falsification and verification job had a
timeout of 1 hour and used a radius of 3 in the latent space.

Analysis and Findings. We start by examining the mean
reconstruction similarity (MRS) measures for the counter-
examples generated by DFV. The MRS values are computed
based on their reconstruction with VAFE ;ps. Fig. 4 shows
box plots representing the distribution of the MRS of the
counter-examples found by each of the 7 tools (x-axis) when
applied to the original DNN (red) and the DNN with the
VAErq1 decoder (blue) generated by DFV. We find that,
across all tools, the use of a model with DFV renders counter-
examples that are reconstructed better by VAF j;rg than those
found in the original DNN. Indeed, the median MRS for the
counter-examples found in the original DNN is under 0.1,
while the median MRS for the tools applied with DFV is
above 0.6. This implies that they are closer to the distribution
learned by VAFE );rs and thus may be closer to the true input
distribution. A statistical analysis of variance with the Kruskal-
Wallis method! confirmed that the differences between using
and not using DFV on any given tool are significant at p=0.05.

Fig. 4 also includes a horizontal line representing the
median MRS of the FashionMNIST test set. This line provides
another guideline to judge the quality of the counter-examples.
Counter-examples found by the tools without DFV seem to be
well below the median MRS of the test data, indicating that
they are constructed poorly, likely due to being far from the
distribution. Counter-examples found with DFV tend to have
MRS higher than the median of the test set, indicating that
they come from the distribution.

The shaded columns in Fig. 4, measured on the y2-axis,
show the number of counter-examples found. These data
show that, as expected, the number of counter-examples found
when a tool is applied with a generative model decreases as
irrelevant parts of the input space are pruned. For example,
DeepFool found 74 counter-examples on the original DNN
and 56 when applying DFV?.

'We had to perform the non-parametric Kruskal-Wallis test given the
different standard deviations observed across the distributions.

20ne exception to this trend was nnenum, which reported a floating point
error when attempting to verify many properties on the original DNN but
it did not do the same with DFV. We conjecture that this is because DFV
may be steering the the tool away from inputs that cause the failure. We will
contact the developers to address this issue.

This portion of the study also revealed an interesting oppor-
tunity for verifiers. Based on the property design, we expected
that the verifiers would not be able to prove a property of
type B, and were unlikely to prove one of type A on the
original DNN, which was indeed the case. However, when
we used DFV, the nnenum verifier was able to prove 25
problems that held under the reduced input space encoded
by the VAERgi. This observation points to an opportunity
for enabling verification to prove properties that may not
hold over the whole input space but may certainly hold over
the relevant input space as per the training distribution. In
order for such an approach to be effective, further studies
are needed to guarantee that the generative model encodes an
overapproximation of the input distribution. We discuss this
further in future work.

We now qualitatively examine the counter-examples gener-
ated with and without DFV. The tabulated images in Fig. 5a
are the counter-examples with the highest SSIM generated by
each tool on the DNN, and the ones in Fig. 5b with DFV.
Without using DFV, we see in Fig. 5a the images generated
by all the falsifiers look like random noise, while the images
generated by the verifiers have a bit more structure, with larger
blocks of similarly valued pixels, but still have little discernible
pattern. On the other hand, most of the counter-examples
generated with DFV in Fig. 5b bear some resemblance to
the training images (e.g., boots, pants, sandals), and some of
them are clearly identifiable. We also notice that the counter-
examples found with DFV for some properties correspond
to distinct classes. We argue that when no counter-examples
are found for a property with a model, but are found for the
original DNN, like for Property A-1 and A-3, those counter-
examples are likely to be invalid as they reside outside the
data distribution. By the same token, when counter-examples
are found with a model but not found without a model, like
for Property A-4, we argue that the model reduction enables
tools to explore the pruned space more extensively, enabling
their generation.

Last, we briefly examine the time distribution for each tool
to generate the counter-examples. Fig. 6 presents box plots for
each of the tools, and we again plot the number of counter-
examples on the y2-axis. As expected, falsifiers are faster than
verifiers. Looking at the 0.75 quartiles of the times spent by
the different tools, we can see that all falsifiers took under 1.5
seconds, while the verifiers took up to 1444.5 seconds. PGD
detected the most counter-examples, 85 on the original DNN
and 71 with the approach, while its median execution time
was just over a second. When comparing the boxes within a
tool, we find that incorporating DFV did not have a major
impact on the time taken by any of the tools.

Major Findings: Tools applied in conjunction with DFV
generate fewer counter-examples that have a x4 increase in
MRS, in negligible time, and that visually appear to be much
better aligned with the training distribution.

3The larger variation for Neurify can be attributed to the smaller number
of counter-examples it generated.
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B. RQ-2: on VAE structure effects on DFV

We now explore the effects of the VAE’s latent space size,
number and size of layers, and radius from the center of the
latent space distribution on the efficacy of DFV.

Experimental Procedure. To answer RQ2, we again use
the GHPR-FMNIST benchmark while exploring several fac-
tors that may affect the efficacy of DFV. Given that there is
a large number of configurations to explore, that the larger
VAE configurations are not runnable by all verifiers, and that
the performances of all falsifiers were similar in the first
experiment, we selected to run all configurations and DFV
with only the PGD falsifier. We first explore factors related
to the VAE architecture, varying the size of the latent space,
the number of hidden layers, and the size of each layer. We
explored latent space sizes of 1, 2, 4, 8, 16, and 32; hidden
layer counts of 1, 2, and 4; and layer sizes of 16, 32, 64, 128,
and 256. For each combination of factors, we trained a VAE
on the Fashion-MNIST data and transformed the correctness
problems using DFV, and ran PGD on the resulting problems.
We will refer to each as VAE;; 5, where d is the latent space
size, [ is the number of hidden layers, and & is the size of each
hidden layer. The model VAFES§ 2 256 has an 8-dimensional
latent space with 2 hidden layers, each with 256 neurons.
Second, we explore how the size of latent space region of
the model affects the quality of the found counter-examples.
We will specify the size of the input region by restricting the
radius of the [*° d-ball in the latent space of the VAE. We will
explore this factor with radii of 0.25 to 4, in 0.25 increments.
To reduce the number of experiments, we use only the VAE
that performed best in the first part of the experiment — with
a high number of counter-examples found and high MRS. For
this question, each falsification job was run 5 times to reduce
the effects of random noise and each job was given a timeout

of 5 minutes. For each combination of factors we report the
number of counter-examples found, as well as the MRS of
each counter-example.

Analysis and Findings. We explored a total of 90 VAE
configurations that work in conjunction with DFV. To control
for randomness, we run each configuration five times.

We start by examining the effect of the latent space size,
across all 15 of the VAE architectures, on the quality of
counter-examples found, as measured by the MRS and the
number of counter-examples found. Fig. 7a shows, across the
latent spaces, that the median MRS varies between 0.65 and
0.75, and the number of counter-examples between 866 and
1306. The maximum possible number of counter-examples in
this plot is 1500, since there are 15 VAE architectures for each
latent space size, and 20 properties that were checked 5 times
each for each architecture.

We observe that smaller latent spaces (LS={1,2}) appear to
generate counter-examples with slightly higher MRS, mainly
because the model renders a less diverse set of images but
of really good quality. The differences in MRS are confirmed
with an ANOVA test of significance and a multiple comparison
of latent space means with a Bonferroni correction across
the latent spaces. More specifically, the MRS for LS=I is
significantly different from the rest of the latent spaces, and
a LS=2 is significantly different from the rest, at p=0.05.
We conjecture that larger spaces are able to encode richer
data distributions enabling the generation of more and more
diverse counter-examples that are sometimes farther from the
distribution (i.e., a sandal that appears as printed on a shirt).
Still, for this particular benchmark the gains in the number
of counter-examples found and the losses in MRS seem to
saturate after latent spaces of size 8. Across all of the latent
spaces sizes, PGD required a median of 0.5 seconds to find
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counter-examples. The timing data for these experiments is
available in the appendix.

We then selected the VAE architectures with LS=8, which
contained the architecture with the tying highest MRS with
the most counter-examples, to examine their variance. The x-
axis of Fig. 7b contains the 15 VAE architectures we explored
specified in the x-axis by the latent space size, the number
of layers, and the number of neurons. We note that the
architectures with more layers appear to be able to produce
counter-examples with higher MRS. For example, the median
for the architectures with 1 layer was 0.58, with 2 layers was
0.68, and with 4 layers was 0.79. An ANOVA confirms that
the differences across architectures are significant at p=0.05,
and a pair-wise comparison with a Bonferroni correction
reveals that all the architectures with 1 layer are significantly
different from the ones with 4 layers. The figure also seems to
indicate that, given the same number of layers, having more
neurons would render slightly higher MRS. For example, the
median for the architecture with 16 neurons was 0.59 and
for the three architectures with 256 neurons it was 0.71. We
notice, however, that the number of counter-examples found
was higher when fewer layers are used. We conjecture that
having more layers further restricts the size of the input space
learned by the VAE, perhaps due to the extra expressive
power of the additional layers. As with latent spaces, the
time to find counter-examples did not vary significantly across
architectures, with most of them requiring a median of less
than 1 second to find a counter-example. The timing data for
these experiments is available in the appendix.

The last piece of this experiment explores changing the
radius of the constraints in the latent space. We examine
the effect of such changes on VAFESg s 256, the architecture
with the most counter-examples and greatest MRS in Fig. 7b.
Fig. 7c shows that the MRS slightly decreases after the first
bound of 0.25 and then starts to increase with higher bounds,
from a median of 0.80 for a radius of 0.25 to a median
of 0.68 for a radius of 1.25 and back to a median of over
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(dashed box), and numbers of counter-examples (color bar) to
the DroNet properties.

0.75 MRS with a radius of 4. An ANOVA test across radii
was significant at p=0.05, and a multple comparison with a
Bonferroni correction showed that radius 0.25 was deemed
significantly different from radii 0.5, 0.75, 1 and 1.25 but
non-significantly different from the higher radii (timing details
are provided in the appendix). We also note that the number
of counter-examples found increases as the space to explore
around the captured data distribution increases from a radius
of 0.25 (25 counter-examples found) to 1.25 (95 counter-
examples found).

Major Findings: VAE configurations with very limited
capacity (in layers, neurons, or latent space size) can have a
noticeable effect on the DFV effectiveness, specially in the
number of counter-examples being found. If more counter-
examples are desirable, then one should increase the dimen-
sionality of the latent space, reduce the number of layers,
and increase the radius. If higher-quality counter-examples are
more desirable, then favoring a lower-dimensional latent space
and smaller radius, and reduce the number of layers.

C. RQ-3: on DFV Scalability

In this experiment, we assess the scalability of DFV by
applying it to a large DNN model for autonomous UAV control
using 3 different input distribution models.

Experimental Procedure. To answer RQ3, we use the
larger and more complex GHPR-DroNet benchmark. We apply

the PGD falsifier to the benchmark, both as is, and using
DFV both with a VAE model, as well as with a GAN as
the generative model. We train a fully-connected VAE, FC-
VAE prone:r With a symmetric encoder and decoder. The
decoder of FC-VAFE p,one: has 6 hidden layers in the decoder
with sizes 512, 512, 512, 512, 1024, and 2048, all with
ELU activations, except the final layer which uses a Sigmoid
activation. For GANp,.ne: We train a DCGAN [67] model
on the DroNet dataset [39] with a Sigmoid on the final layer.
Both models use a 512 dimensional latent space. As before, we
run each falsifier 5 times to account for random noise and we
record the number of counter-examples found and the time to
find each counter-example. Each job had a timeout of 1 hour.

Analysis and Findings. Fig. 8 shows box plots with solid
outlines for the distributions of the reconstruction similarities
of counter-examples found using PGD on the DroNet DNN
without DFV, as well as using DFV with the decoder of
FC-VAE prone: and the generator of GANp,onei. Fig. 8
also shows the number of counter-examples found using each
model using bars with the count labeled above each bar. We
find that, for DFV with both models, while fewer counter-
examples are found, they clearly have higher reconstruction
similarities than those found using the DroNet model alone. In-
deed, the MRS differences between DroNet, FC- VAE p,onet,
GANp,oNet are shown to be statistically significant overall
by a Kruskal-Wallis test with p=0.05, and so do their pairwise
differences. Corroborating the previous findings, this implies
that the counter-examples found using DFV are closer to the
distribution learned by Conv- VAE p,.onet, the model used to
compute the MRS values, and thus may be closer to the actual
input distribution. Without DFV, violations were found for all
10 properties across all 5 seeds. Using FC- VAF, 28 violations
were found for 6 properties. Using GAN, 9 violations were
found across 2 properties. While the lowest MRS for a counter-
example found using DFV was 0.42, the MRS without DFV
never exceeded 0.11.

We now proceed to visually examine the counter-examples
generated with and without DFV for 5 properties. Fig. 9 shows
counter-examples generated by PGD. The images generated
without DFV look like random noise, while the images
generated with DFV, independent of the chosen model, have
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Fig. 9: Counter-examples to DroNet properties with 3 distinct input models. The counter-examples shown are from the final
run of the falsifier on each of the 10 properties. When applied in conjunction with DFV, whether using a VAE or a GAN, the
generated counter-examples visually appear to be much better aligned with the training distribution.

structure and contain features seen in the training images
such as roads, trees, or horizon lines. The model used for
DFV has an impact on the images produced. While the
VAE model tended to produce blurrier counter-examples, the
GAN model produced counter-examples with sharper lines,
but fewer recognizable road features.

Finally, Fig. 8 shows box plots, with dashed outlines, of
the time to generate each counter-example using each model.
The median time to falsify DroNet alone was 321 seconds,
while DFV with FC-VAE p,,net took 146 seconds and DFV
with GANpoNe: took 259 seconds, but there is enough
performance variance that those differences are not deemed
statistically significant.

Major Findings: DFV can be applied with various models
without significant time penalty, while also producing counter-
examples with up to 9x gain in reconstruction similarity.

D. Threats to Validity

External Validity. Three threats to the generalization of our
findings are our choice of tools, benchmarks, and generative
models to evaluate DFV. We mitigate the concern about
tools generality by selecting multiple falsifiers and verifiers
as part of the first research question. For the next questions
we traded generality across tools for more insights about the
performance of DFV under different models, which implied
that we had to drop DNN verifiers from the rest of the
assessment because they did not scale to the networks and
models we were targeting. Regarding benchmarks, we selected
ones from different domains, one a classification task, and the
other being a regression task, with very different architectures
and training data. Still, more benchmarks are needed to more
broadly explore the cost-effectiveness of DFV. To mitigate
the threat about model selection, we explored an extensive set
of models in a systematic way. Still, the examination of more
generative models is part of the future work.

Construct Validity. Our choice of MRS as a quality
measure and our personal qualitative judgment of generated
counter-examples pose a threat in that the relevance of a
counter-example could be judged by many means. We miti-
gated this threat by basing MRS on a popular measure, ESRE,
and specializing it to images with SSIM. We also provide
results using ESRE in the appendix, and we will explore

additional measures including those for outlier detection in
the future and perform studies with users to help us judge the
counter-examples quality.

Internal Validity. Our training processes for the networks
and the models constitute a threat to the internal validity of
the study as their correctness could have affect the findings.
We have documented and programmed those processes when
possible through scripts to facilitate their reproduction. We
also mitigate this threat by making our data and scripts for
running our experiments and analyzing our results publicly
available (see below). Another threat to validity is the ran-
domness involved in training of networks and models, and in
the tools’ performance. We mitigated that threat by running
those tools multiple times and showing their variability.

VI. CONCLUSION

This work introduces a novel approach, DFV, which en-
ables existing DNN verification and falsification techniques
to target the data distribution. DFV composes learned latent
variable generative distribution models with the DNN under
analysis, reformulating the problem so that generated counter-
examples are on the data distribution. We explore different
data distribution models and find that using even simple
models yield substantially better counter-examples across a
range verification and falsification techniques for two different
benchmarks.

These findings along with recent work on distribution-aware
testing [9], [7], suggest that models of the data distribution can
play an important role in V&V of DNNs. We plan to pursue
further work along these lines. For example, how performance
metrics for latent variable generative models that assess their
precision and recall [43], can guide the development of distri-
bution models that are customized to best suite different V&V
activities for DNNS.

ARTIFACT AVAILABILITY

We provide an artifact containing the tool, as well as the data
and scripts required to replicate our study at https://zenodo.org/
record/5104745
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